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SUMMARY

Analytical and numerical methods are developed
that predict the flux of radiant energy from a family
of thin, planar, conducting fins. For a symmetrical
array of fins, extending out from a common edge,
conducting heat internally, and radiating diffusely,
a nonlinear integro-differential equation is derived
and solved. Specific results are given for para-
metric variations of conduction, emissivity, fin
geometry, and base temperature. The techniques
of calculation are studied with possible extensions
in mind.

INTRODUCTION

The present paper has a dual objective.  TFirst,
it will furnish predictions of the radiative inter-
change of heat between an assemblage of conduct-
ing, planar fins subjected to incident radiant
energy 1n a diathermanous environment.  Second,
it will develop a combined analytical and numerical
attack on the type of integro-differential equation
associated with problems of this general character.
The results represent one unit of a program of
radiative heat caleulations now under way at the
Ames Researeh Center, NASA.  Specifie results,
ol usc in design studies, will be given for a par-
ticular Tamily of fin orientations. An attempt
will be made, at the same tune, to develop the
iterative mathematical methods in such a way
that extensions to problems of similar tvpe are
readily apparent. The numerical calculations
were carried out on an TBM 704 installation, and
the total computing time for the results to be
shown required approximately one hour of machine
time.

The design of space vehicles has focused atten-
tion on finned surlaces and their use as radiative

disposers of waste heat or as collectors of incident
solar energy. In such a case the nature of the
external environment precludes the need to con-
sider convective heat transport. A significant
physical idealization, and the one to be considered
here, arises when one represents the fins as a sym-
metrical array of planar surfaces of thin plates of
thickness 2¢, and with a common edge, see figure 1.
The length of the common edge is sufficiently
large in comparison with the Iength L of the plates
normal to this edge that the heat exchange can be
studied in the two-dimensional cross-plane, figure
1(). The number of fins n is an arbitrary
integer >1 and the included angle §==360°/n.
The plates are alike in physical structure with a
known coefficient of conductivity, the radiative
emission 18 diffuse, and a gray-body ivpe of
analysis is employed; that is, no dependence on
radiation wave length is included.  The symmetry
of the configuration is retained and subeases of
practical interest appear if it is assumed at the
outset that a fixed temperature T, is imposed
along the common axis (x -0, =0) and a uniform
distribution of incident diffuse radiation is assumed
to be direeted into the open face of cach of the
angular sectors. A briel derivation of the gov-
erning cquations will be given in the following
seetion.

In a recenl paper, Sparrow, Grege, Szel, and
Manos, reference 1, have solved a special form
of this problem. Specifically, they omit heat
conduction within the plates themselves and
consider no external souree field.  Tn effect, they
study the case of infinite thermal conductivity
and determine the radiant interchange of energy
between the two plates of figure 1(b) when surlace
temperature is a constant. The integral equation
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(n) Three-dimensional idealization.
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(b

() Two-dimensional section.

Frovre 1.—Arrangements of fins.

that characterizes the transferal of cnergy was
splaced in their analyses by a finite difference
cheme that led, in turn, to the study of simulta-
neous, lincar, algebraic equations.  To achieve a
reasonable degree of accuracy in the final solu-
tion it was necessary o use a rather large number
of simultaneous cequations. Even then, some
sacrifice in accuracy was ineurred in the imm ediate
neighborhood of the common edge (a singular
point in the kernel of the integral equation).  We
shall here approach the general problem from a
different. point of view and usc an iterative
process that comprises a wedding of machine
caleulation and the Licuville-Neumann method
of solving a Fredholm integral cquation of the
second kind. The analysis of reference 1 s a
linear one; when conduction and variation in
plate temperatures are considered, nonlinearities
appear and the analysis involves the solution
of an integro-differential equation, but no unsur-
mountable difficultics beset the iterative method
of altack, and adequate convergence of the
numerical process is retained.

In another paper, Eckert, Trvine, and Sparrow,
reference 2, have derived the defining equations
under more general conditions involving thermal
conductivity within the fins and differing fin
geometry. Readers interested in extensions ol
the theory to other configurations should refer
to that work. The restriction to thin planar
fins was proposed in reference 2 as a reasonable

simplification that produces results of genera
interest and at the same time lessens the number
of parameters affecting the predictions. The
techniques of caleulation presented here can he
extended, however, to apply to additional cases.

The analytical section which follows reviews,
at the outset, the derivation of the integral and
differential equations controlling the heat ex-
change.  We next show how some information
regarding the solution can be achieved analytically.
The bulk of the contribution is, however, con-
tained in the iterative numerical calculations car-
ried out on an electronic computer. The final
results are graphical representations ol temper-
ature distribution along the fins, the thermal
current flow within the fins, and the local net
heat-transfer function Tor a range of physical par-
rameters including the angle 8, the emissivity or
reflectivity  of the plates, and thermal  con-
ductivity.  The nomenclature follows generally
that used in the references mentioned above, but
some differences do appear.  The Table of Sym-
bols defines all important variables.

Readers with special interest in the physical
predictions may wish to confine their attention
to the basic assumptions, the defining equations,
and the subsequent presentation of results. A
final section has been added, however, in which
the adaptation of the problem to digital com-
puting machines is discussed in some detail.
This latter section is intended to aid people con-
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cerned with similar predictions.  Finally, a more
general discussion of improvements in the con-
vergence of mnumerical iterations is included.

TABLE OF IMPORTANT SYMBOLS

a cos o

B, By combined radiative flux (emitted
plus reflected) from z or y
(cal/em? see)

B*(&), B*()
B*(8)

. } ) B
dimensionless combined flux, T
]

radiation lunction defined in equa-
tion (20)

e uniform incident radiation flux from

external source {cal/em? sec)

G(&) function miroduced in  equation
(18h)
II(r) incident radiant flux at £ (calfem?
sec)
k thermal conduetivity
K ) kernel function introduced in equa-
tion (9a)
L fin length
. . . e
N, dimensionless flux, o
. . o T}
N, conduction parameter Tb
q(x) local thermal current inside fin

{cal/sce)

q* (&) see cquation 11)

Q) local heat flux (eal/em? sec)

Q*(&) see equation (12)

2(z) integrated heat flux (cal/em sec)

2%(8) see cquation (13)

r distanee hetween two points

S;, S, areas on two fins

t half-thickness of fin

T(x) absolute temperature, local

T, temperature at x 3 0

(%) dimensionless temperature T

r, Y nonorthogonal coordinates along
fins

z coordinate along common axis of
fins

a gray-body absorptivity, 1 - p

€ gray-body emissivity

En dimensionless coordinates %%

0 angle between adjacent plates

gray-body reflectivity, 1—a

ANALYSIS

GOVERNING EQUATIONS

Figure 2 shows the idealization of the assumed
geometry. The symmetry of the assumptions
permits one to consider only two plates of thickness
2t, of length L and infinite extent normal to the
planc of the paper, and forming the angle 6 at their
common edge. The nonorthogonal coordinate
axes z and y extend along the direction of the
plates and for small values of t/L may be assumed
either to coincide with the plate surfaces or to lie
along the center lines.  Let dS; and dS, be repre-
sentative area differentinls on cach surface, and
denote by B(r) the combined radiation flux
(energy per unit time and area) at the point x.

. P

Ficrre 2.—Tin pair with incident radiation.

Thus, B(x) embraces both emitted and reflected
energy, and the emission is adapted from the
Stefan-Boltzmann law in the form es 7", where
e is surface gray-body emissivity and o is the
Stefan-Boltzmann constant. Incident energy per
unit time and area at r is denoted by fI(x) so
that reflected energy flux is pfT(x)=(1—a)l1(r),
where a is absorptivity. Combined flux then
becomes

B(x)=eoT(2)*+(1—a)II(z) (1

From an external source we assume a diffuse
flow of energy through the area connecting the
fin tips. The magnitude of the fluxis e.

The incident energy flux at z is composed of
two parts: first, the flux arriving from all posi-
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tions y on the opposing plate; second, the flux
from the external source.  Combining these (wo
effects, one has

1= [ BGUF. ey, @
'y Sy

where dF;-, is the angle factor under which dS,
is seen from z, and F,-g, is the angle factor under
which the surface S, between the fin tips is seen
from z.

In a two-dimensional configuration the angle
factor of an infinittesimal area of unit width,
dS;=(1)(ds,), as viewed {rom a point Py, 18

1d A) ds, (3)

(IFI_Q ‘) ]S

where, as in figure 3, 7 is the distance P, and

Nerma! to
curve at A

s

Fravre 3.—Sketch showing variables in two-dimnensional
angle factor.

A is the length ol a perpendicular dropped from

P, to the surface normal at P,.  Thus
1d iy cos b—r
AFry= 2(IJ (x?+ 12— 2ry cos 6)12 @y
_(0—a) aydy @
T2 (2t 2amy)¥?

For flux at z produced by the
similar considerations

where a=cos 6.
uniform incident encrgy,
give

eF_s

_£ [] La—rx (')
e 2 T4 —2aLr)" | Y

Equations (1), (2), @), and (5) yicld the integral
equation for B(x):

B(x)=ecT'(r)*

w rydy
+ f By )(J‘ Yyt —2ary) Y

é’(l —a) La—x
+- 2 [1 —(—L2‘1‘1'2—2(!L;‘) ,"Zé] (6)

The differential equation governing the con-
duction within the fin balances the energy trans-
port, as given by Fourier’s law, and the radiation
flux from the exterior surfaces. Applying this
equality to a two-dimensional strip of unit width,

one gets
dT
clx (“ dr

In addition to equations (6) and (7), the following
boundary conditions are specified

=B(x)—11(r) )

=T, at =0
_A(((]TT‘):B(L)_H‘.‘L) al r=1 (8)

It is convenient to rewrite the governing equa-
tions as they appear in a normalized system of
variables (see Table of Symbols).  One then gets

B*(g):eT*<s>4+“‘;")N"[‘ T gat ]
+AZIN=O [ B a0
where
O T T
%”;zﬂf 5 [T @ —aB*®] (b

with boundary conditions

T*(0) =1
dT*()_ Nt o, N
L [B*(1)—11*(1)] (9¢)

~— Y [Ty ]
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The following relations also apply

BX®)—ITME)=eT*(E) ' —all*§)
_ T ) ' —aB*E)

i (9d)

—a
TRANSFER FUNCTIONS

A straightforward solution of equations (9)
involves the determination of the two functions
B*(&) and T*(&) by solving the integral equation
(9a2) and the differential equation (9b). From
this analysis, which is obviously a nonlinear one,

5

follow predictions ol local temperature, local

current flow within the fins, local heat flux from

the surfaces, and total heat flux. The results

to be given later will be expressed in terms of

starred values defined by the following relation:
Temperature, °K

T=T(x)

T(LriL)
T,

Physical variation:

(10)

Predicted variation: T*(E) =

T.ocal thermal current inside fin (cal/sec)

Physical variation: q(!)z—w
dr
TV BN ¢*(&)__q(La/L)  dT*E)/E
Predicted variation: 5T = oTi2L — N

Tocal heat flux (cal/em? see)

Physieal variation:

O(2) =B (2)—IT(z) = eoT(x)*— I 1 (z)

(12)

Predicted variation: Q*(‘g’):Q

Integrated heat flux (eal/em sec)

L
Physical variation: 2= f Q(x)dx
]

Lo/ I)ldx

(La/L) _d*T* (&) g
T D‘L - E\‘YC

(13)
1

Predicted variation:

ANALYTIC PROCEDURES

A new independent variable #(g) where

_1dT*(®)
u(s)—:\*c g (14)
is next to be introduced in equations (9). The

analysis is thus cast in a form where the unknown
is a constant factor times the local thermal
current.  From the first boundary condition of
equation (9¢)

¢
THO =1+ N, [ Tulede, (1)
Equation (9b) then becomes
& o _dn® | T
e S =D

from which equation (9a) can be rewritien as an
integro-differential equation

LUTQ‘

[JT*(D _dT*(0)

N, dt dg

]
d?{l{é&) =¢ {[1 + ]\'{J:u (El)d&];—% Ne}
1zl ‘(f_’u__é_.{[l-wc

dyp 1—a
" P« -
[(utete ]~ N} ) Keman am
0

with the boundary condition

u(l) = —% € {[l +1‘\T(‘£1u(51)(]£1]4—% N } (17b)

For purposes of discussion, it is also convenient
to rewrite equation (17a) in the alternative form

du(f)
dt

[o0-952 [ cwrEmd]

44 ”’S“‘”L "Zlf,") K& mdn (189)
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where

G(E)—e{[] +.\;fu E u(fl)dg.]l—% A;} (1sh)

Belore proceeding to a discussion of general
cases, two immedinte simplifications should be
noted in the governing equations. The first of
these oceurs when no fixed value of 7' is imposed
and the entire conficuration is allowed to seck the
cquilibrium state consistent with the incoming
radiation from the external sourece; the second
oceurs when conduetivity & becomes very large
and the parameter N, consequently approaches
zero.  These speeial ecases will be treated next.

Tn this ease, total equilibrium can be achieved
by imposing local equilibrium conditions.  Thus,
we set

BXEe) =TT () —eT*€) ' —al I*(€) =0

and under these conditions 7#(8)-=1 where the
reference temperature 7, is yet to be determined,
Il one then returns directly to equation (6), the
resulting equation is

Bro= [

ot

- s
o L
SO BwRE

and the solution is B*(§)=TII*(¢§)=N,=const.
Equilibrium conditions thus yield

ae—=geT™

and the uniform equilibrium temperature is

ORI

Consider next the infinite conduction case, N.=
0. Again, from equations (9b) and (9¢), T*(&) =1
where 7, has an assigned value different from the
particular equilibrium value of equation (19).
From either equation (17) or (9a) it can be shown
that the transformation

B*(¢)— N,

AT
e—alN,

Bro)= (20)

reduces the integral equation to the form

R e O LA

Equation (21) implies that under proper normal-
ization of the dependent variable the case of
mfinite conduetivity and uniform inecident radia-
tion can he reduced (o a study of radiative
transfer for which no external sourece appears,
conduction is disregnrded, and the temperature
of the fin 1s held fixed. The problem then re-
verts to the type studied in the paper of Sparrow
and collaborators.  Solutions of equation (21), for
an extensive range of the parameters « and a=
cos 6, will be given later.

The integro-differential equation (18a) as well as
equations (9a) and (21) are directly associated
with the classical Fredholm integral equation of
the second kind

45—/ + f gEEndn  (22)

where 0<A=(1—a) (1—a?)/2<1/2. One might
reasonably expect, therefore, success in achieving
a series expansion in powers of A, the so-called
Liouville-Neumann  expansion of the solution.
This idea eontrols the work to be developed later.
Tt is also important to note the nature of the
kernel funetion K (¢, 9).  Figure 4 shows a sketeh

%

Ticure 4. —Kernel function in radiation integral equation.
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of K(¢, ). The function is symmetric, is never
negative, and varics inversely with distance from
the origin along all rays through the origin except
in the coordinate planes £=0 and 5=0. The
function is not bounded throughout the entire
region of integration but, rather, increases in-
definitely as one approaches the origin along an
arbitrary line £/9 — const. 'This means that some
care must be exercised in using theorems drawn
from the theory of integral equations. In this
particular case, however, the kernel is integrable
and no special difficulty is encountered in extend-
ing the analysis. The integral of the kernel is,
in fact, a monotonic decreasing function in the
variable £

o<flK(g Y= [H— a—§ -]< !
=), A = 1+£2—2a5)"2 | 1—a

(23)

The geometry of the problem indicates in-
tuitively that some simplification should be
possible in estimating conditions at the inner
corner of the plates since the extent of the fins
becomes effectively infinite. A more precise
development of this observation proceeds as
follows. In equation (22) set &4 = 7. One
then gets

T g@/n)dr
(L7 2ar)""

gO=r®+xr

Passing to the limit as £ -—> 0, one has

®__ g(0)dr

gO=f O+ | - gy

1) +529
and, therefore
__JO
10 =137a—g
J(0) 24)

T1—(1—a(1+a)/2

This fix on the corner value of the unknown is of

considerable value in numerical calculations since,

in spite of the fact that the magnitude of g(0)

is readily determined, a singularity in dg/dg
609884—61-—2

exists at the corner and affects any techniques
based on finite difference methods.

In application to the general equation (18a),
it follows that the corner value of du/d¢ is

du(0)  (e—aN,)(1—a)

dt ~ 1+a—a(l—a) (25)

since, from equation (18h), G(0)==e—aN..

It is also possible to show that the power series
resulting from an iterative expansion of equation
(18a) must also converge. If the bracketed
term on the right is denoted F(§), the iterative
expansion becomes

‘l"(‘g) —rp+ 1790 .—a»_2>‘ [ R K, £)de
e[ i—a)] [
+3[ O Mk

1 1
L K)o [ Kl BIFEE . de
(26)

The reasoning whereby the series convergence is
demonstrated may be shown by considering the
case in which heat energy is to be radiated away
from the configuration; that is, when 7, =2 7.
It is obvious then that the thermal current must
flow outward along the fin and that u(§) =
[dT*(&)/dE]/N, < 0. Thus

1 4
) { [+ utepan |
—EAn}sms)se(l—fNe) @7)
€ €
and since, from equation (19),

' 4
() 25)

equation (27) vields

e[TH(1) T |<GE <T(0)—Tx*]  (29)

The function of G(£) is therefore a positive bounded
function, and the magnitude of the function F(¢)
In equation (26) is also less than some finite
constant 2 since the integrated kernel is bounded.
Finally, repeated use of equation (23) shows that
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the infinite series must converge to an absolute
value not in excess of

, = M1—a)(1ta T\ _ n
g {w;[ 2 ] f*2f(1—a)(1+a>
(30)

The analytical considerations have thus estab-
lished the exact value of du(0)/dE in general or,
in other terms, the corner value of the surface
heat flux per unit area. [t has also been possible
to show that when the funetion F(g) of equation
(26) is known explicitly, a converging ilerative
solution is possible. In the case of infinite con-
duction, where the problem becomes one of
solving the integral equation (21), the numerieal
caleulations follow preeisely the steps preseribed
in the series development. When finite conduc-
tion occurs, F(2) in equation (26) is a functional
of u(&) and the numerieal calculations must
include an iterative evaluation of F(¢). In the
final section of this paper the programming of
this caleulation will be diseussed.

Tt should be remarked that a purely analytical
attack on the iterative process becomes excessively
complex even in the special case characterized
by ecquation (21). The singular nature of the
kernel at £=5==0, which is a result of the corner
between adjacent fins, is the prineipal source of
the difficulty and it appears that the general
solution of equation (21) has the form

B =2 at"+> > b FIn° ¢

The nature of this solution accounts {or the singu-
Iar behavior of dB;*/d¢ at the corner. A similar
expansion should apply locally for the nonlinear
case with conduetivity.

PRESENTATION OF RESULTS

Before presenting the numerical predictions
of the general solutions, the analytic result of
equation (25) will be recast in more physically
meaningful terms. TFrom equations (12) and
(14)

Q0) 1 &*T*(0)_ du(0)
O'de —.'\—vc- (]EE B ([5

and from equation (25)

0 );(eaTb*—ae) sin? /2
Tsin? 9/2+a cos? §/2

This relation gives the exact value of the local
heat flux and displays no dependence on the
conductivity ol the material. Since al3(0)
=e Ty — (1—a)Q(0), the local wvalue of the
incident and the emitted energy fluxes are given,
respectively, by

eo T, cos? §/2+¢ sin® 6/2

0= sin? 8/24« cos® 6/2

(32a)

o4 (1—a)e sin® /2
sin’ 6/2+4-a cos? §/2

BO)= (32b)
When 60, the contribution from the external
source necessarily vanishes and the heat flux
vanishes sinee the incident and emitted energy
arc equal in magnitude; when f===, the incident
energy is derived solely [rom the external source.
Of speeial interest are the variations of these
{unctions in the case of small but nonvanishing
values of the included angle 8. One would anti-
cipate that if the included angle diminished, and
il the absorption and emission coeflicients were
equal, the emission would approach in the limit
black body radiation. The quantitative expres-
sion of this fact follows from equation (32b)
since

1—a#

BO)—< oT=1 =2 (e aT,,4) (33)

applies under conditions for which 6°/4<<<Ca.
Figure 5 shows the dependence of Q(0)/(a7%*
—e¢) on 6 and on e(=a).
In all of the following results the relations
a=¢=1—p are assumed to hold. Since the case

[Ke]
€=1.0
.9/
8f— -} - //
ZL—1
E-% o —
~l»
2| 5
SINEN i B
lt /

22—t~ — 1  —
.
]

0 30 60 30 120 i

o

Q 180

Tigrre 5.—I1eat flux at £=0, with dependence on ¢ and 8.
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in which the material surface is held at constant
temperature over the entire Iength is of partic-
ular interest, an extensive range of solutions is
shown in figure 6. The angle ¢ has been allowed
to increase from 10° to 135° in mcrements not
greater than 10°.  These curves extend the ealeu-
lations of reference 1 and, as remarked previ-
ously, may be interpreted so as to yield local heat
flux cither with or without an external source of

radiation.  The ordinate seale is the reduced heat
flux function @Q*(E)/e(1—N,) or Q*(&/(A—p)
(1—N,). This form of plolting spreads the

curves and makes them easier to read bul, even
when N,=0, actual magnitudes of the heat fluxes
can be compared only after multiplication by the
reflectivity factor 1—p. The singularity in the
gradient of @*(¢) is not readily apparent from the
graphs although the magnitude of the gradient
does increase notably as reflectivily increases
(cmission decreases).

By virtue of the symmetry thal was imposed
originally in the problem, it is obvious that the
results of figure 6 can be applied directly to two-

dimensional configurations, such as those shown
in figure 7.

The graphs of figure 8 were calculated in order
to predict the effect of conductivity on the heat
flux, temperature, and thermal current.  Tn all of
these cases the external radiation field was deleted,
thus  N,=0. Although other solutions were
caleulated, the angle 8 has been restricted to
three typieal cases, 30°, 60°, and 90°. When N,
=0 the temperature distribution is uniform, in
conformity with infinite conductivity, but the
thermal current is finite and not zero.  Its value
=2kt dT(e)/dr, as given by Fourier’s law, is an
indeterminate form but the current must appear
in order to support the distribution of loeal heat
flux. The numerieal solution was calculated
through the use of the independent variable w(§)
which was directly  proportional to thermal

1 A study of notched radintors with constant wall temperatures has been
given by L. F. Daws in a paper entitled The Emissivity of u Groove, British
Jour, App. Phys., vol. 5, May 1954, pp. 182-187.  This report, which came
to the nuthors’ attention during the proofreading of the present paper, tabu-
lates results for 6=15°, 30°, 60°, and e=0.64. Duws also gave an explicit
expression for the combined finx at the corner.

8=20°

oM )
(=p){1-Ng)

/

5,

N
/
g

.
Z

P9
8

"

"

L

|
I
I
i
|
2

A :
7y
748

8=10°

|

|

|
i

\

(o]
N
D
[e2]
@
o
o
I
o

Ficrre 6.—(a)

Fiaure 6.—-Local heat flux for constant temperature, with dependence on p (=1-—¢) and 4.
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6=100°

g=110°
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le

o

7

o

A

TiGure 7.—Wedge-shaped cavities in constant-
temperature material,

current and the mathematical indeterminacy did
not arise in the calculations.

Figure 9 shows the integrated heat flux (see
eqs. (13)) corresponding to the results of figure 6.
These predictions thus apply to the ease of uniform
surface temperature. It can be shown direetly
that the ordinates of the curves at e=1 are given
by the cxpression

PF .8 .
E@Jﬂﬂﬂmﬁ (34)

It is of some interest, finally, to depart {from
consideration of the physieal predictions and men-
tion an interplay between pure analysis and
machine caleulutions (hat arises in this particular
problem. To illustrate this, consider once more
the formal iterative solution ol equation (21). The
complexity of the analysis can be reduced con-
siderably if, following each new prediction, the
unknown function is approximated by a polyno-
mial of increasing order.

Suppose in equation (21), the [unction 3,*(¢)
is a constant €. Then

qa oz [ a—f :,
041—%(, 2 l+(1__2’1£_!_£2>1/2
Agreement at =0 demands that

T T I ¢ S 1€ S O e
B*(0) - ('U_[l X ]

T{ the constant is again forced to give agreement
at £=1, one gels

S )

A linear approximation can thus be written in the
form

B*§) = Cot- (C,— Cp)

and a new prediction caleulated.  Such a caleula-

tion gives

o =1+05% a1 izt

+e(0,— 0y 1)

1 2a°>—1—ak
{ (I—a¥) [(1—2<1-£+Ez)"2+a:|

[(1—ag) + (1 — 2a¢ +£)17) i
' (1 a) } (35)

+In
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Fravre 8.—Temperature, thermal current, and temperature distributions in condueting planar fins; t/L=0.05.
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Figure 8.— (i) Concluded.

Ticure 9. —Integrated heat flux for constant temperature,
with dependence on e and 6.

In order to continue the process, values at £=0,
0.5, and 1 can be determined and B,*(¢) approxi-
mated by a parabola passing through the known
ordinates.

The principal idea being developed here is that
analytical procedures like the one above can be
studied experimentally in combination with nu-
merical results and the range of validity of the
approximate predictions then determined.  Figure
10 shows a comparison between exact results and
predictions based on equation (35) for the special
case in which 6=90°, Considering the roughness
and simplicity of the approximations used, the
agreement is surprisingly good. At §=10° the
agreement is wholly inadequate but relutions like
equation (35) may serve a useful purpose when
some sacrifice in aceuracy is acceptable and the
range of the parameters is limited.
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Frerre 10. - -Comparizon between exact and approximate
prediction of loeal heat flux, §=90°.

NUMERICAL METHODS

The discussion in this section concerns the
methods and analysis used {o solve equation (17x)
for the given boundary conditions by means of a
digital computing machine. Tts inclusion in a
report of this kind has been brought about by the
development of computer “‘languages” (such as
FORTRAN), by means of which the engineer can
communicate divectly with the machine. The
experience of the authors has been that an under-
standing of such languages considerably affects the
kind of theoretlical analysis the engineer directs
toward the solution of a specific problem; turning
it toward points that arise principally because a
machine is to be used, and away [rom points
(which, without the machine, might have con-
sumed large anounts of time) that are no longer
essential.  Their experience has also been that
such knowledge is extremely useflul in the formula-
tion of the problem, permitting the engineer to
recognize al that eritical stage just what assump-
tions and compromises are and are notl really
necessary in that these decisions affeet machine
running time by orders of magnitude.?

The numerical study of the present problem
requires special atlention in two areas, one, the

? The engineer can at least be aware of the approximate minimum time a
really optimum programming of his problem requires.  This is hased largely
on the number of independent variables in his particular problem and the
range of parameters he wishes to cover. ¥ow close he chooses to approach
this minimum depends upon his breadth of interest and his particular
economy.

numerical {reatment of the singularity in the
kernel, and the other, the production of a program
that produces a solution to the integro-differential
equation in a short time.  The latter depends, of
course, on the number of runs anticipated. In
this problem, for cach 8 there are five parameters
N, N, t/L, «a, and ¢, and a very modest coverage
of them all demands a Inrge number of individual
solutions. The manner in which these difficulties
were treated will now be considered.

The difficully at the singularity (§=7n=0 in eq.
(9)) was largely overcome when the exaet value of
the unknown was discovered there, see equation
(25). The essentials of the remaining analysis are
as follows,

Equation (18a) was written in the form

%g_)zg@ 4 A=e)(i=a) f LAWK n)dn
(36)

where

duln) _G(n)

An="" 1

and G() is given by equation (18b). The length
from 0 to 1 was then divided into (M—1) equally
spaced intervals. In cach interval A(y) was re-
placed by a straight line. Thus, if Ay=A[(N—
D/(M—-1)]

1
1§)= | AWEE, n)dn

AM-1 (N+1 . - N
~ > f {IN=(L—=1)9]dy
Noidw

FIM—Dn—N+1]Adyer ) K(E n)dn  (37)

The integrals f[x’(f, 7)dn and an(S, nidn are
casily evaluated. The coefficient for the known
A;=A(0) was delermined by caleulating the in-
tegrals for nonzero £, then setting =0 and then
letting £ go to zero. This simple approximation
resulted in terms which presented no numerical
difficulties in any region. The estimated error,
based on runs with differing 37, is less than ean be
shown on any of the graphs in this paper.

MACHINE TIME

The decision was made at the outset to use a
method of iteration to attack the present problem.
This choice was made for a variety of reasons. In



18 TECHNTCAL REPORT R—-116—NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

the first place an analysis (egs. (26) and the follow-
ing) had already shown such a method converges.
Secondly, iterative methods are easy to control.
They can be terminated quickly if they are diverg-
ing, and, il their convergence is slow, methods can
be brought to bear that will often greatly hasten
it.  Finally, in the present ease, an iterative pro-
gram is quite casy to write and, therefore, com-
paratively easy to put into production without
exeessive delay.

Having chosen the iterative technique, and hav-
ing in mind a large number of cases to study, it was
considered necessary 1o estimate the minimum fea-
sible time required for cach new iterative solution.
The erux of the problem here is the time required
to evaluate the integral T(§) given by equation
(37). T 1(f) is ealculated at the same points as
Al), we can write

J-1\ &
I,:1<J i l)g S ATl T=12, ey M
(39)

The time required to ealculate the A different
values of I, is given by the product M?>(r X p where
x is the unit machine time (12>107% see for an
IBM 704) and 7 is the number of machine units re-
quired for caleulating one AyIly and adding it
to the others. Tteration times are clearly mini-
mized if IT,y is calculated only once (several hun-
dred machine units are required to find each 77,y)
and stored in the machine for subsequent use.?
The value of 7 for an IBM 704 1s then about 35
and the time required to ealeulate the set of 1,'s for
each iterative solution is about 420X A2>107°
seconds.  Of course, the complete iteration de-
mands additional caleulations but they involve
only one independent variable and are, therefore,
proportional to M, not 342 (sce table 1), Allowing

Table 1. Estimates of minimum times involved for certain
operations on an IBM 704 (assuming Go(£) and G(§, z)
have been properly weighted and stored). Both £ and
» tuke W values in the interval 0 to 1.

fl Go(£) F(£)dE~380 M 10-° seconds

i

f Go(8) [ (5)dE, 0 < < 1~1000 MX 105 seconds
{

1
J‘ Gi(§, ) F(E)dE, 0<xr <1~420 M2 10-% scconds
W

3 This requires M? words in storage but offers no problem if Ar<51 even
for n machine limited to an 8000 word capacity,

that they double the above figure, the total time
for one iteration amounts to around 84031/ mi-
croseconds, or about 2.2 seconds for /=51, the
value generally used in this report.

In actual practice slightly over 300 different
cases were run, about a quarter of which are shiown
in this report. The production time was just under
2 hours.* About nine iterations were required for
the average production case ® which nccounts for
85 percent of the production time on the basis of
the 2.2-second estimate.  The rest of the time is
roughly accounted for by the necessary data input
and output and the evaluation of the I1;y each
time 6 was changed.

THE ITERATIVE PROCEDURE

In carrying out a numerical iteration some test
must be provided to decide when the iterations can
be terminated. TIn this report a solution is assumed
to have been arrived at when the integral of the
absolute value of the difference between two suc-
cossive iterative solutions drops below a certain
limit. Tn particular, when

. A
J:)l ((‘% J—((dg,).l-!»l ’ (l.f

~ i

ST DUHN) — DU2(N) 0.0001 (39)
H

where WT(N) is in integration weight (e.g.,

Ahf3 times 1, 4, 2,4, .. ., 2,4, 1 i Simpson’s

rule is used) and DUL(N) and DE2(N) are arrays

holding two consecutive iterations. The first
iterutive technique used is outlined helow:
1. Tnput general data.

Prepare arrays for simple integrals.

Input 8.

Culeulate and array the kernel K(¢ #) in

equation (36).

5. Input ¢ N,, t/L, and S and evaluate perma-
nent constants.

6. Calculate right-hand side of equation (18a),
assuming G and dufdg are the constants
given by equations (253) and (18h) with
£=0. Array the results in DUIT(N),
1<N<M.

7. Tnput N,

W N

Hea

1 Total time, including compiling and c¢heckont, was 3.61 hours,

5 This has been considerably improved for future work. FEight cases that
took 208 iterations were rerun using a method for accelerating convergence
and the number was reduced to 60, This method is discussed in the following
sections.
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8. Caleulate the right-hand side of equation
(18h) using DUI(N). Array the result
n (7(N).

9. Caleulate the right-hand side of equation
(18a) using the values now in DUT(N)
and G(N).  Array in DU2(N).

10. Find f‘[nmfm*z;,zg.
(1]

array Error (7).

11. If Error (J)<0.0001 take instruction 13,
otherwise take 12.

12. Replace DUTN) with DU2(N) and return
to 8.

13. Output data and return to 3, 5, or 7.

The procedure just presented was satisfactory
for the study of variations of the remaining
parameters, N, ¢ #/L, and 6. A typical plot of
the Erron term against the number of iterations
is shown in figure 11.

Store result in

Error (I}
089453
015641
.003080
000664
000128 |
000028

08

OO B WN — ey

Error (1)

04

Q
o] 1 2 3 4 5 6
Number of iterations, I

Ficure 11.—Typical variation of error term with number
of iterations,

A METHOD FOR ACCELERATING CONVERGENCE

Although figure 11 was typical of most cases,
two regions of parametric combinations converge
very slowly using the above method.  Both oceur
for «Il values of ¢/L considered.  One oceurs when
N, ¢ and 8 take their largest values and the other,
when e and @ are small throughout the entire
range of N,

Often the suceessful application of a converging
iteration scheme depends upon the first choice
of the dependent variable. A poor first choiece
can result in an intolerably slow rate. This is
precisely what happened in the present study
when t/L, N,, ¢ and 8 were equal to 0.05, 2, 0.9,

and 120°, respectively.  The eircled dots in figure
12 show the variation of the Exror term for 30
iterations. Obviously the convergence rate is
unacceptable.  Detailed inspections ol the situa-
tion are presented in figures 13 and 14, Figure 13
shows the initial choice of dujdg and the first five
successive iterations.  Figure 14 shows the value
of du/dg at g=1 for the first 20 iterations. In
both cases the final value is given for comparisorr.

Fortunately, the kind of convergence illustrated
in these sketehes can be improved remarkably by
means of methods developed for that purpose
(c.g., sce refs. 3, 4, 5, 6).  All of the referenced
methods are based on the assumption that a se-
quence of terms in an iteration contain information

.8
I |
8:120° 1/7L=.05
© €=.9
- w2 e
—_ o
= o}
‘9‘ 4 5 T I B
S Co _}First method
%06
©0odo
— i T TTB G600 |
DT ’_A-Acce\eruied convergencle
0 8 16 24 32

Number of iterations, I

Trarre 12.—Slowly converging iteration scries and im-
provement brought about by a method for accelerating
convergence.

,lst iteration

First guess

o I — 3rd
—
AN T
du AN \_‘\,"
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~
6th ~ o
— —
\ —— — —_ ]

—_—t |
o] .2 4 6 8 1.0

3

Fievre 13.--First few iteration distributions of du/dE
against £ for slowly converging case.
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b
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T o

X o L
o © °

Fing! value.

[¢] a 16 24
Number of iterations

Ficrre 14. -Variation of end points, first few of which are
shown iu figure 13, for 20 iterations.

regarding their final value, information which is
lost if only the last term is used for each succes-
sive step. To apply these methods u few consecu-
tive iterative solutions are retained in the machine
memory and eventually ealled upon to form the
final estimate or to find an improved siarting
value for a new series of iterations.  Shanks (ref.
3) has developed o method for using any number
of iterative solutions. Tn this report only three
are used.

We can deseribe the method used herein geo-

metrieally with the aid of figure 15. Consider
\
i \\
\
\
\ Rectanguiar
\ hyperbela through
) _.-1st two points
\ _X-""_-2nd two points
]
R
N\
N
le— ¥ = - D —
Asymptotes

l—-— 1 — +‘=— ;———l X
Ticvre 15—Rectangular hyperbolas mentioned in dis-
cussion.

three successive points ¥y, s, ¥, in any iterative
scheme and plot them against, say, » with unit
spacing. Pass a rectangular hyperbola through
the first two, and another with the same y asymp-
tote through the second two, but, for generality,
with an r asymptote displaced by 1), Thus
N=r)(YV—y)=c
(XN—m)(Y—y2)=c
and
(X+D—a)(YV—y)=c*
(N D—r) (VY —ya)=c*
are the equations which must be satisfied. The
difference between the two equations in each case ®
eives, for a fixed 17, two equations for the unknowns
X and T. Solving for ¥ and using the relations
r—ry=r,— =1, one finds

e e 1 (B o) INC'S
Y23 ' Nl

The variable 17 is a point on the curve that will
form the starting distribution for the next itera-
tion. Tts distance from the last approximation
divided by the distance between the last two
approximations, (Y—y)/(a—ws), is itscll a ree-
tangular hyperbola when considered as a function
of the wvariable (n—v.)/(y2—ys). This is illus-
trated in figure 16,

(%)
Y273

—

Tilustration of equation (34), formula used to
accelerate convergence,

Fravne 16.

8 Notice that, by considering only the differences, the final formula will
be independent of ¢ and ¢*. Notice also that the skelch represents a very
simplified picture of what can happen, Both branches of both hyperbolas
{which can lie in any quadrant since ¢ and ¢* can be either 4 or —) are often
involved. The latter is the case, for example, when applying the results to
the points in figure 14.
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We turn now to the choice of 2. I[ three points
are actually spaced as shown in figure 15, a “best”’
generally acceptable I is not resolved. Values of
D between 0 and 1.5, say, yvield cquations that
could give the proper limiting Y. 1Tf, on the other
hand, the first and third points are nearly equal
and the second is considerably different from them,
as is the case in figure 14, the best D lor our pur-
poses is readily determined. Tn such cases the
choice /)=0 yields a value for 17 that is nearly
equal to the first and third . The choice D=2
yvields a value equal to the second y. The choice
D=1 yiclds a value nearly half way between, and
since we are assuming that the sequence of points
is similar to that shown in figure 14 (i.e., converg-
ing, although, perhaps, slowly), this choice is
clearly preferable. It is significant that when
D=1, equation (40) is identical to the expression
used by several authors (a few of which are refer-
enced at the beginning of this seetion) to accelerate
convergence.’

Tet us briefly consider the real value of equation
(40) for use in the iterative solution to equations
like those given by (18). At once, it appears that
equation (40) can only be useful if three succes-
sive terms do actually contain information about
the value they eventually approach; but in equa-
tion (18) each point in any iteration is linked in
a complex, nonlinear way with every other point.
Tlenee, a sequence ol iterative solutions for one
point may have quite valuable information regavd-
ing their limit, whereas a companion sequence for
another point may contain no information what-
soever. Three points that lie (to some numerical
degree of accuracy) on a straight line, for example,
have no value in determining a bounded asymp-
tote (provided one exists). For this reason equa-
tion (40) was not used to evaluate 1 in the vicinity
(i —2)/ ra—ys) =1, the region where three suc-
cessive points approach a linear relationship. In
fact, the scheme finally chosen to accelerate con-
vergence was to use equation (40) with D=1 for

0520515

Ya—Ua ™
and
Yoy (1)
Y2—Ys Y2—Ys

7 It is interesting to note that Isakson (refl. 4) derives equation (40) for D=1
by fitting to three successive points a curve that approaches its asymptote
exponentinily.

in the interval between 0.5 and 1.5 (the latier
amounts to the straight dashed line shown in
figure 16).

In terms of the machine, this required a modi-
fication to the program outlined above. At the
beginning of step 12, DU and D72 were stored
in two new arrays the first (or every odd) time
through. The second (or every even) time, DTU2
was stored in a third array and a subroutine was
entered which ecaleulated a new D71 on the basis
of equation (40) or (41). The machine was then,
again, sent back (o step 8.

RESULTS OF ACCELERATING CONVERGENCE

When the method presented in the preceding
secetion was applied to the case #/L=.05, N,=2,
e=0.9, and 6=120°, the results for which, by the
first method, are shown in figures 12, 13, and 14,
the sequence of Exrror terms were those given in
ficure 17 and also, for comparison, in figure 12.

8
o] Z Error(I)
6 I 674922 |
: 2 .499569
3 .125426
= 4 4 .135886
N 5 014637
S 4 — 6 004526 —
= 7 .001900
8 .001607
9 .000170
10 .00003i
2 — —
[0 o]
[o)
o] 2 4 6 8

Number of iterotions

Fiavre 17.---Variation of error term after accelerated
convergence method had been applied to slowly con-
verging series.

The final values, alter 10 iterations, are the dashed
curves in figures 13 and 14, The success of the
method in this case is evident.

The second region of poor convergence, small
e and small 8, was not significantly improved by the
above technique. Figure 18 shows the first three
iterations (after the initial choice of a constunt
equal in magnitude to the starting value), and the
final distribution. The first “improved’ curve is
given by the dashed line and shows a discontinuity
between 0.82 and 0.84. Tt is at this point that the
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machine switches from equation (40) to (41). Tt
is our hypothesis, therefore, that for £ less than
0.84, the first three iterations have lost most of

.08

06—

du
gE o4 t—1—

o2 7

Itergtion

o
n
>
o
o4
S

3

Ficure 18. Illustration of three slowly converging itera-
tions and “improved” distribution obtained from them.

RioK o
08
V.
o6 — —_ —]
v
43
04 Final disrrﬁmoy
ol
L .
/ Group of
itergtions
4 B 8 [Re]

Treure 19.—Successive “improved” iterations resulting
from application of accelerating eonvergence technique
to slowly converging process.

their value insofar as predicting their asymptote
is concerned.  To substantiate this, equation (40)
was applied to ealeulate points for lower £, The
results are shown in figure 18 down to £=0.7 by
the cireled dots.  Below 0.7 the values were nega-
tive! For this case, at least, the hypothesis 1s
correct.

Tn spite of the above difficultics, the method was
continued and the iterations converged (in the
sense that condition (39) was satisfied) in 20 s{eps.
TFor the same aceuracy 21 steps were required by
the first method.  TFigure 19 shows the first four
new successive sets of three iterations.  The num-
ber of points containing significant information
regarding their limit according to the above eri-
terion gradually inereases, the dividing line moving
toward the origin like a wave with diminishing
amplhitude.

Ames Research Center,
National Aeronautics and Space Administration,
MofTett Tield, Calif., May 16, 1961.
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